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Goals :

e tool tracking

deal with tool-tissue interaction

fast, real-time

can be embedded into closed-loop control
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A novel 2D simulation framework includes four modules:

P wne

Mesh generation using 2D tissue images
Position-based dynamics methods for tissue simulation
Collision detection method for tool-tissue interaction
Implicit Euler energy computation



Methodology

Mesh Generation



Methodology

Mesh Generation

Image

(~A



Methodology

Mesh Generation

Image

Contour points

detection
|




Methodology

Mesh Generation

Image

Contour points

detection
|

Delaunay
Triangulator




Mesh

|

S
= 8
835
S oo
an
d.m
el =

Contour points
detection

Mesh Generation
Image

>
o0
°
@)
©
@)
i -
o
)
=




Methodology

Algorithm: Simulation Process (Position-based dynamics Simulation)[l]

[1] J. Bender, M. Miller, and M. Macklin, “Position-based simulation methods in computer
graphics,” in EUROGRAPHICS 2017 Tutorials. Eurographics Association, 2017.
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Algorithm: Simulation Process (Position-based dynamics Simulation)[l]

x* = x! + Atvh + AtQM_lfext (Xt) > prediction step
While iter < Solverliterations do
for constraint C € M do
Compute Ax > constraint solving step
X =X + Ax
end
end
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Algorithm: Simulation Process (Position-based dynamics Simulation)[l]

x* = x! + Atvh + AtQM_lfext (Xt) > prediction step

While iter < Solverlterations do

for constraint C € M do
Compute Ax [> constraint solving step
X =x + Ax
end
end
XH_1 = X > update position
Vt+1 — (XH_1 — Xt) /At > update velocity

[1] J. Bender, M. Miller, and M. Macklin, “Position-based simulation methods in computer
graphics,” in EUROGRAPHICS 2017 Tutorials. Eurographics Association, 2017.
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Position-based dynamics Simulation

Solver: The position correction AX in each iteration can be computed on
based on the constraint violation and its derivatives through Gauss-Siedel
Method.

® Distance constraint:
Cspring (X17 X2) — |X1 — X2| — dO

® Area conservation:

1
Carea (X1,X2,X3) — 5 |(X2 — X1) X (X3 — X1)| — Ao
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between it and the tool is smaller than a fixed threshold a.
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Collision Detection for Tool-Tissue Interaction

The collision point is defined as the particle g on the mesh when the distance d*
between it and the tool is smaller than a fixed threshold a.

Position update for each particle i

relxg=xill ) Vipawi
xgpdate — r d* ||v$::||’ lf,r o ||Xq o XZH 2 0

‘ 0, otherwise
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Implicit Euler Energy Computation

Contains both the inertial and potential terms:

1
E(z) == [|x"™ = x" 12\/1 + AE,(x")

2

Potential energy = spring elastic energy + area conservation energy

1

where,

1

: T
C. = [ (x), €
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Task1: The tool is approaching the bottom/upper tissue

1e_Mplicit Euler Energy of The Bottom Tissue
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—— Inertial Energy
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Energy (Joule)

1e_dmplicit Euler Energy of The Upper Tissue
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Task2: The tool is being inserted from two different angles,
aiming at the same target goal.

It is obviously to see
the energy variation
according to insertion
angle.
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Conclusion
e Simulate the 2D soft tissue deformations

e Deal with tool-tissue interactions
e Energy computation for the control and planning applications

Future Work

e Extended to 3D surgical environments
e Embedded into closed-loop control system
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Thanks for Listening!

Any Questions?
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