
Using K-ary Logistic Regression for stop sign
detection: A Project Review

Yunhai Han
Department of Mechanical and Aerospace Engineering

University of California, San Diego
y8han@eng.ucsd.edu

Abstract—This paper presented approaches using K-ary Lo-
gistic Regression for stop sign detection. In this work, I manually
label the selected image data into seven different classes. Then, I
trained a K-ary Logistic Regression model with all the labelled
image data. In order to decrease the loss function, I optimize
the parameters, and input other unseen images for classification.
Finally, I detect the stop sign from the proceeded images based
on the geometric properties.

Index Terms—K-ary Logistic Regression, Machine Learning,
optimization, detection algorithm

I. INTRODUCTION

In modern world, the rapid development of the driver assis-
tance system has made driving easier for drivers. However, in
order to increase the driving safety and driving experience, we
should propose a method which could impart the autonomous
driving system the intelligence to make the appropriate reac-
tion based on the surrounding environment [1]. For example,
when the car is approaching the crossing road, it should be
aware of the positions and even the velocities of pedestrians
and other vehicles in front of it. Until they all leave, the car
should not start to move. To be more specific, if there exit
a stop sign in front of the car, the control system needs to
send the stop signal to the motors immediately. Hence, various
methods have been proposed to detect stop signs and some of
them have been successfully applied into the real-world system
[2].

The essential part of the detection algorithm is how to
remove the effect of the illumination change and the various
point-of-view. If two images of the same object are taken at
the same place, one of which is taken during the daytime and
the other one is taken in the night. The pixel intensities could
be totally different because of the imaging system is not light-
invariant. Also, if two images of the same object at the same
time are taken from different perspectives, the shape of the
object projected in the image plane could not be the same
because of the pinhole camera model. In order to handle these
two problems, a new method should be proposed on how to
learn the variance between different reds and the difference
between the general red and other colors.

In this project, many different images containing stop sign
are given as the train set. Hence, the main purpose of this
project is to learn from these training data for a classifier and
apply it into any unseen image. In order to obtain a classifier
with light invariance, a K-ary Logistic model is proposed for

its robustness. Once the color is classified, a stop sign detector
would be implemented to locate the stop sign in the image.

II. PROBLEM FORMULATION

Given a training set of images containing stop signs or other
objects like roads or cars, the problem is to build a color
classifier that could distinguish the stop-sign red with any other
colors, including other red, blue and other colors. Using the K-
ary Logistic Regression, segmentation could be implemented
by classifying each pixel into seven different classes:

• stop-sign red
• other red
• green
• blue
• yellow
• gray
• white

Then, with the segmented binary images(stopsign-¿255,all
other classes-¿0), a detection algorithm is implemented to
locate all the objects which satisfy certain requirements. These
objects represent the stop signs in each image.

The K-ary Logistic regression with K-classes(y ∈
1, ...,Kn) uses a softmax model with parameter W ∈ RK×d.
In this project, each pixel intensity could be represented in the
RGB color space and there are in total seven different color
classes. Hence, the value of K and d could be determined as
K = 7, d = 3.

The probability function for this model could be described
as following:

p(y|X,W) =

n∏
i=1

eTyi
s(Wxi) =

n∏
i=1

eTyi

eWxi

1T eWxi
(1)

In the above equation, ej is the j-th standard basis vector, for
example, e3 is (0,0,1,0,0,0,0).
s(z) is the softmax function, which has the following

representation and derivatives:

s(z) =
ez

1T ez
∈ R7 (2)

dsi
dzj

=

{
si(1− si) if i = j

−sisj else
(3)

In the above two equations, z is a vector with seven elements
in this case and it is the product of W and the ith pixel in the
training set.

For the text image, the objective is to find the maximum
value of the probability function and classify this pixel x∗

with the corresponding label.

y = argmax
y

eTy s(Wx∗) (4)

In the above equation, the variable y represents the index of
the label in the color list defined before. For example, if y is
1, it means the pixel should be classified as stop sign, which
is the first class in the list.

III. TECHNICAL APPROACH

There are in total nearly 200 images in the dataset. Some
of them contain one of more stop signs taken from different
perspectives. And the pixel intensity for different stop signs
are not the same duo to the different lighting conditions. I use
13 images(from 88.jpg to 100.jpg) as the training set and all
the left images are separated into the test set.

A. Color Segmentation

In order to generalize the segmentation model, I use more
than two classes instead of only stop-sign red and other colors
as a whole. Because using more different classes refines the
classifier, which make it more robust to different conditions.
As I defined in the previous section, there are in total seven
classes, I restate them here for the convenience of further
explanation.

y = [stop-sign red, other red, green, blue, yellow, gray, white]

I hereby tell the reason why I choose these seven classes. s̈top-
sign redr̈epresents the specific red areas on each stop signs.
Only if any pixel are classified as this class, they would be fed
into the detection algorithm. öther redr̈epresents any other red
colors, for example, the red clothing of the pedestrians or the
red-painted cars. g̈reenr̈epresents the color of grass or the trees,
which frequently appear in these training set. b̈luer̈epresents
the color of the sky, which cover the largest area in most
images as the background. ÿellowr̈epresents some other signs
or any yellow objects. g̈rayr̈epresents the color of road or the
buildings, which also cover most areas. ẅhiter̈epresents the
color of zebra crossings and clouds. Indeed, we start with
the six color classes except öhter,̈ but we found in fact there
exits some other red objects. Hence, later we add this color
class into the list because we think it may refine the model
improving its accuracy.

Each pixel is represented in its RGB color space(xi ∈ R3).
we hand label these training images using roipoly function in
Python and capture the region of interest(ROI). Then we store
these data using Python module pickle for the next training.
We don’t convert the pixels into other color spaces because
we think the performance is not bad.

Besides, we acknowledge the kindly collaboration from
Zhirui Dai, Qinruo Li, Yuhan Liu, Yaosen Lin, Zhijin Liang
for data labeling process.

The model we select here is a discriminative classification
model. After training, we could obtain one parameter W ,
which has the dimension of 7*3. Further, we could find the
optimal class for each pixel on order to achieve the largest
probability.

To be more specific, the parameter could be computed by the
non-linear optimization method via MLE(Maximum likelihood
estimation). We have to compute the gradient of the data log-
likelihood:

W
(t+1)
MLE =W

(t)
MLE + α(5W [logp(y|X,W)]|

W=W
(t)
MLE

)

=W
(t)
MLE + α(

n∑
i=1

(eyi
− s(W (t)

MLExi))xT
i)

(5)

In the above equation, α is a parameter which we have to
tune for many times. The value of α is mainly determined by
the number of training data. In this case, as you can imagine,
we could extract a great amount of pixels from each image.
Hence, finally, I set α as a small number:0.00001.

The computed parameter W are given below:
W

color channel red(R) blue(B) green(G)
stop-sign red 7.97998502 -5.52467351 -3.12123777

other red -2.29260393 -2.99410614 -2.45656097
green 2.64526509 11.27600299 -9.97913918
blue -12.05650543 -0.04008605 18.02165188

yellow 0.90202575 -1.19887349 -2.44773507
gray 2.19011698 -1.6565441 -0.59845608
white 0.63171651 0.1382803 0.58147718

To classify a pixel xi, the log probability could be determined
as below:

y = argmax
y

eT
ys(Wx∗) (6)

For example, if a pixel value is represented as (x1, x2, x3),
the prediction value for stop-sign class could be computed as

Pss-red = 7.97998502x1 − 5.52467351x2 − 3.12123777x3

and the prediction value for blue class could be computed as

Pblue = −12.05650543x1 − 0.04008605x2 + 18.02165188x3

We could simply compare the different prediction values for
each class, and then we classify the pixel into the class
corresponding to the largest prediction value.

For every pixel in each image, we implement this algorithm
to obtain a color segmented image. This image is a binary
image with pixels assigned a value of 255 if it is classified
stop-sign red and 0 for all other classes. An example of the
binary mask image with its original RGB representation are
displayed in Figure 1.

(a) RGB image (b) Binary image

(c) RGB image (d) Binary image

(e) RGB image (f) Binary image

Fig. 1. Example color segmented image and binary mask image

B. Stop sign Detection
The binary image mask obtained from the previous opera-

tion contains some random noise, which may result in poor
performance for the detection algorithm. Hence, we first have
to find a way to overcome this problem. Hence, additional
pre-processing operations are needed to remove the random
noise, which could be considered false positive results of
the segmentation algorithm. Morphological methods are the
first method that come into our mind. The opening operation
erodes an image and then dilates the eroded image, using the
same structuring element for both operations. Morphological
opening is useful for removing small objects from an image
while preserving the shape and size of larger objects in the
image. In this case, it also shows great effect of removing
random noisy pixel. In python-opencv2, all the operations
have been encapsulated in the function cv2.morphologyEx.
By simply calling the function, we could compare the results
before and after the opening operation.
kernel = cv2.get..Element(cv2.MORPHRECT, (3, 3))

closed = cv2.mor.Ex(img, cv2.MORPHOPEN, kernel)

In the above expressions, due to the limit space, the name of
the two function are not expressed completely. The first func-
tion is cv2.getStructuringElement and the second function
is cv2.morphologyEx.

(a) Before Opening (b) After Opening

Fig. 2. Results before and after Opening

From Figure 2, you can that the small white holes could
be removed smoothly. And the shape of the stop-sign almost
remains the same.

After removing the random noisy pixels, we now could
find all the instances for further distinguish. These operations
could be done with the opencv2 function cv2.findcontours.
It would return all the points on the contours of each instance.
Based on the prior knowledge that the area of stop sign should
be too small, we could simply set a threshold to filter all the
instances whose area is smaller than the threshold. After some
test, I set the threshold as 700. With another opencv2 function
cv2.boundingRect, we could simply draw a bounding box
containing each instances. Because the shape of all the stop
signs is octagon and its projection on the image plane would
not change drastically, the ratio of the width and height of the
bounding box would not be too large or too small. From the
above two criteria, two simple requirements must be satisfied
in order to be considered as the candidates of stop signs:

• area > 700
• width

height > 0.6 and width
height < 1.4

The area of each contour could be easily obtained from the
function cv2.contourArea and the width and height are two
member variables of each bounding box.

Besides these two simple requirements, I figure out another
criterion based on its geometry property. In Figure 3, you can
see there are four right triangles at the four corners of the
bounding box and in most cases, we could consider these
triangles nearly Isosceles. In other words, the lengths of all
the X segments and of all the Y segments should be nearly
the same. In the image plane, it could mean the sum of pixels
should be nearly the same. Suppose m represents the sum of
X pixels and n represents the sum of Y pixels, the following
requirement must be satisfied:

• min = min(n,m) max = max(n,m)
• max

min < 1.5
The threshold 1.5 is obtained from many tests.

With the stop sign detected, the coordinates of the bottom-
left and top-right corners of the bounding box could be easily
obtained from the four member variables of it:

• x-> the x-coordinate of the top-left corner
• y-> the y-coordinate of the top-left corner
• w-> the width of the bounding box
• h-> the height of the bounding box

Fig. 3. The illustration of its geometry property

What we have to pay attention is the origin of image in
opencv2 is different from the the required one. In opencv2,
the origin is the top-left corner of the image but the required
origin is the bottom-left corner of the image. Hence, we need
to convert the y coordinate.

• yrequired = height of the image - y

IV. RESULTS AND DISCUSSION

Using 13 images from training and 30 images for validation,
the accuracy is given below:

Accuracy =
26

30
= 86.7%

However, for the test images on the autograder, I was only
able to detect the stop-signs in two of them. I have tried many
methods, but they didn’t work. Right now, I think the main
reason is that during training process, the volume training data
for each class is unbalanced. For example, I feed much more
pixels classified as gray than pixels classified as stop-sign red,
because the areas of road are much larger than the areas of
stop sign. For Logistics regression, data unbalance may pose
a threat to erode its generalization ability. However, it works
well on the validation images, which makes me feel a little
confused. Maybe the main reason is that the test images on
the autograder are in extremely bad lighting conditions. And
the best way to solve this problem is to feed more balanced
date into the training model and make sure that the training
images are taken with different lighting conditions.

A. Stop sign Detection Results

Using the validation images set, the good cases far outnum-
ber the bad cases. You can see the results shown starting from
the next page.

V. ACKNOWLEDGMENT

I am grateful to the whole Python communities for provid-
ing us with so many powerful tools.

REFERENCES

[1] Liu, Henry Ran, Bin. (2001). Vision-Based Stop Sign Detection and
Recognition System for Intelligent Vehicles. Transportation Research
Record. 1748. 161-166. 10.3141/1748-20.

[2] M. A. A. Sheikh, A. Kole and T. Maity, ”Traffic sign detection and clas-
sification using colour feature and neural network,” 2016 International
Conference on Intelligent Control Power and Instrumentation (ICICPI),
Kolkata, 2016, pp. 307-311.

Fig. 4. Detection Results

