
Particle filter SLAM using odometry, 2-D laser
scans, and RGBD measurements

Yunhai Han
Department of Mechanical and Aerospace Engineering

University of California, San Diego
y8han@eng.ucsd.edu

Abstract—This paper represented approaches for simultaneous
localization and mapping problem(also known as SLAM). In
this project, we are provided with sensor data, odometry, 2-D
laser scans, and RGBD measurements from a humanoid robot.
However, all these sensor data are not perfect because they are
contaminated by random noise to some extent. For this reason,
instead of accumulating raw data without any modification, I
introduced particle filter to generate enough number of particles
at different locations and decide which are the better particles
according to the current scan. Then, we select the particle with
the largest probability and update the map assuming the scan
data was obtained at that pose.

Index Terms—simultaneous localization and mapping(SLAM),
Particle filter, Odometry, Sensor noise

I. INTRODUCTION

Robotics is the science of sensing and manipulating the
physical world through computer-controlled devices. Exam-
ples of successful robotic systems include mobile robots for
planetary exploration, industrial robotics arms in assembly
lines, autonomous driving cars and manipulators that assist
surgeons. Robotics systems are situated in the physical world,
obtain information from their local environments through on-
board sensors, and make reactions. While all of these examples
sound amazing, there are still some really challenging prob-
lems, which make these applications unavailable right now.
First of all, robot environments are inherently unpredictable
and dynamically changes. While the degree of uncertainty
in well-structured environments is small, environments such
as highways and private homes are highly dynamic, thus
highly unpredictable. The uncertainty is particularly high for
robots with people nearby. Second, sensors are limited in
what they can perceive. Limitations arise from several factors.
The range and resolution of a sensor is subject to physical
limitations. For example, cameras cannot see through walls,
and the spatial resolution of a camera image is limited. Sensors
are also subject to noise, which makes sensor measurements
unpredictable and hence limits the information that can be
extracted. Third, robot actuation involves motors that are also
unpredictable. Uncertainty arises from effects like control
noise or mechanical failure. Some actuators, such as heavy-
duty industrial robot arms, are quite accurate and reliable. Oth-
ers, like low-cost or legged mobile robots, can be extremely
flaky(like the humanoid robot in this project). How to handle
uncertainty is indeed the most important step towards robust
real-world robot systems [1].

During the decades of the development of Bayes filter-
s, there are various efficient algorithms including Extended
Kalman Filter, Unscented Kalman Filter and Particle Filter.
The main advantage of particle filter over the other two
filters is that it is a nonparametric method, which means
it could approximate the posterior more accurately. In other
way, particle filter do not make strong assumptions on the
real posterior density. they are suited to represent complicated
multimodel beliefs. However, this advantage comes with extra
computational complexity for particle filter which is larger
than the other algorithms and the running time is also pro-
portional to the number of particles. If the number of particles
goes to infinity, particle filter would converge to the correct
posterior(which is unknown in most cases) and it also takes
infinite time. But, although the number of particles is limited
in reality, they could still provide with some reasonable results
and the running time could be acceptable. That’s one of the
reasons why it becomes immensely popular in robotics.

II. PROBLEM FORMULATION

Given a set of sensor data including odometry, lidar scans
and RGBD images, the problem is to build a map and mark
the robot’s trajectory on the map. However, as I mentioned in
the Introduction section, there are random noise in these data,
which requires me to implement particle filter to estimate the
best trajectory and build the occupancy map corresponding to
this trajectory.
• The first task to synchronize all the data. From the time

tags of different sensor data, I could find that they were
captured at different time. Hence before I use them,
we need to match them based on their own time tags.
The most simple way it to compare all the time tags of
different sensor data set in the time domain and select
the pairs of data which are closest to each other in t as
a new set. For example, suppose xt1 represents the time
tag value of the first data in the set x and ytk represents
the time tag value of the kth data in the set y, I want to
find a k, such that:

ytk ≤ xt1 < ytk+1

For each sensor dataxi in x, I find the sensor data yk in
y which is closest to xi in the time domain.

• The second task is to transform the lidar sacns from
its own frame to the world frame. Since all the angles

including robot’s neck angle, head angle and orientation
and robot’s physical sizes are provided, I could use Euler
angles:the roll(φ),pitch(θ),yaw(ψ) to specify the rotation.
Also, there exist some translations for the origins of
different reference frames along the z − axis, so we
need to add the distance between lidar and robot’s head
and robot’s head between robot’s mass center(translation
vectors) into the coordinates. The rotation matrix could
be defined as follow:

R = Rz(ψ)Ry(θ)Rx(φ)

=

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ∗
 cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

∗

 1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

• The third task is to decide which grids are occupied

based on the robot’s current pose and the synchronized
lidar scan data. I introduce the lidar-based occupancy gird
mapping method to determine the cells that lidar beams
pass through. Because this grid map is not continuous in
2-D dimensional plane, I need to use Bresenham’s line
rasterization algorithm to pick up the pixels on the line.
For each observed cell i(the endpoints of the lines) or
free cell j(cells on the lines), I increase or decrease the
log-odds of each cell respectively. The initial log-odds
for each cell could be set as zero since I have no idea
of whether it is occupied or not. The update could be
described as follow:

λi,t+1 = λi,t + loggh(Zt+1|mi, xt+1)

In this case, gh(Zt+1|mi, xt+1) could be considered
as a constant which specified how much we trust the
observation zt and since all the sensor data were captured
in a short time from the same sensor, I could assume it
would not change.
At the ith iteration, if I want to see what the map looks
like, I could simply select all the grids with log-odds
larger than zero. Because it means the probability of being
occupied is larger than being free.

• The forth task is to update the pose of each particles. I
simply add the deltaPose and random noise with certain
magnitude to each particle to compute its next pose.
During this step, the weight of each particle would not
change.

• The fifth task is to update the weight of each particle.
Using laser correlation model, I could compute the proba-
bility of the current laser scan z being obtained from each
particle’s pose x by modelling the correlation between z
and the local map m around x. In short, I need to compute
the correlation like this:

corr(z,m) =
∑

1{mi = zi}

Then, the weights can be converted to probabilities via
the softmax function:

ph(z|x,m) =
ecorr(z,m)∑
v e

(v,m)
∝ ecorr(z,m)

Then, I could use all the probabilities at each particle’s
pose xi with the same laser scan z to update each
particles’s weight:

αkt+1|t+1 =
αkt+1|tph(zt+1|µkt+1|t)∑K
j=1 α

j
t+1|tph(zt+1|µjt+1|t)

In the above equation, K represents the number of the
particles and k represent a specific particle. µkt+1|t and
µjt+1|t both represent the particle’s pose with respect to
k and j particles. You can see after this update, the sum
of weights is still one, which approximate the probability
distribution over all possible poses. Besides, in the next
section Technical Approach, the derivative of this update
formula and an important assumption will be shown for
the verification.

• The sixth task is to resample among all the particles. I
have to set a threshold Nthreshold and compare it with
Neff = 1∑K

k=1(αk
t|t)

2 and determine whether or not to

create new set of particles from the previous one by the
following rule:

Resample if Neff ≤ Nthreshold
The most important thing is to find a appropriate thresh-
old because it really has a big effect of the algorithm’s
performance. Also, in the next section, I will talk more
about it.

I implement all the above steps iteratively except the first one
which is only required once at the beginning. Hopefully, I will
obtain a good occupancy grid map and the robot’s trajectory.
Just for clarification, I did not implement them in the same
order as I describe here. I would tell more details in the next
section of how they work and how I manage the structure.

What’s more, you could see there are some parameters for
us to determine the values. Indeed, these parameters play a
significant role and it is reasonable to impart them with some
intuitively right values.

The next part of this project is to color the map from the
RGBD sensor data. It could also be decomposed into several
tasks.
• The first task is the same as the previous part, that is to

synchronize the RGBD images and the robot’s pose data.
Since I already have the map and I assume the map is
static in this short time, I don’t have to worry about it.
However, for the trajectory, I need to know the time tags
for the each grid on the trajectory and match them with
the cameras’ data by the timestamp.txt. This could be
done by the same way I described before.

• The second task is to read the depth image and transform
the depth information from camera’s own frame to the
world frame. At the beginning, I have to transfer the

depth value(unit:mm) to the x,y,z coordinates in its own
frame. The principle behind this is very simple. I first
assume the skew coefficient, distortion coefficients and
other uncertainties are all zero, which means the camera
is perfect. Thereby, the camera model could be described
as: u

v
µ

 =

 fx 0 cx
0 fy cy
0 0 1

 X
Y
Z

The function of µ in the above equation is to scale u and
v up to one. u, v, fx, fy, cx, cy and Z are known, I could
obtain X and Y by only one computation:

X =
(u− cx) ∗ Z

fx

Y =
(v − cy) ∗ Z

fy

In practice, the z-axis of the camera model represent
its principal axis, which is equivalent to the heading
direction of the robot. However, in the case, the heading
direction is defined as y-axis and the z-axis is defined as
vertical axis.
the robot’s neck angle, head angle and orientation and
the robot’s physical sizes are required for the correct
transformation from camera frame to the world frame.
Since the method here is also similar to the previous one,
the x,y,z coordinates of each pixels in the would frame
could be easily obtained. The height of the robot’s mass
center is 0.93m, any pixels with z value less than -0.93m
should be considered as floor. I find all the pixels from
all depth images and record their row,column indexes in
each image in order to extract their RGB values from the
corresponding RGB images.

• The third task is to extract the RGB value of each pixel
which is considered to represent floor in the previous task.
Since the x,y,z coordinates or each pixel is known in the
camera frame, I just project them into the image plane to
find the u and v and read the RGB value. Then, I draw
the map with these RGB values.

Hopefully, If I do all of these steps perfectly and I am lucky
enough to figure out the right parameters, I should have a good
texture map right now.

III. TECHNICAL APPROACH

In the Problem Formulation section, I briefly describe the
framework of how I deal with this project. In this section, I
will tell more details about each tasks. Besides, in the last, I
will provide with the flowchart.

A. Data synchronization

Suppose I have successfully read all the sensor data, I am
aware of the time tag of each piece of sensor data. I first
compare the size of different data sets and select the first piece
of sensor data from the data set the size of which is smaller.
Then, I compare the time tag of it x1 with the time tag yi of

the sensor data belonging to other data sets. I set i start from
1 and make the comparison and there are two possible results:

• x1 is smaller than y1. For this case, I need to discard this
piece of sensor data and make x1 to x2, and compare x2

with y1 again until find the xi which is larger than y1.
• x1 is larger or equal to y1. For this case, I don’t have to

discard x1 and I store this piece of sensor data into X
and increase y1 to y2 and compare x1 with y2 until find
the yi which is larger than x1, thus storing the sensor
data with time tag yi into Y .

I implement method iteratively until one of them goes to the
end of its whole set. To the five data sets, the length of joint
data is almost three times larger then it of lidar scans. This
makes sense since the joint sensors works with much higher
frequencies than lidars. After the synchronization is done and
it only needs to be implemented once at the beginning of the
program, I could step towards other tasks.

B. Generate particles

The initialization of all the particles is also implemented
only once. In this step, I generate K particles and all of them
have the pose (0,0,0) and share the same probability 1

K . For
the next iteration, they would be added with the deltapose
and random noise (δx, δy, δθ) which would make each particle
represent different pose.

C. Transformation from lidar frame to the world frame

From the specification provided by the manufactur-
er(Specifications-UTM-30LX.pdf), I could first transform the
length of laser range into the x, y coordinates in the laser laser
plane(z = 0). The angular resolution is 0.25◦, so I generate a

Fig. 1. Laser range figure from specification

angle list from -135◦ to 135◦ with the step as 0.25◦. Suppose
li represents the length of each laser range and αi represents

the angle from 135◦ to 135◦, the x, y coordinates could be
computed as follow:

xi = li ∗ cosαi

yi = li ∗ sinαi

There are in total 1081 laser ranges for each scan, but some
of them may have values larger than 30m or less then 0.1m.
I remove these outliers before computing xi and yi because
it is very unrealistic to trust them. If the laser range detects
obstacle within 0.1m, the laser beam probably contacts some
parts of the robot body instead of walls or windows in the
environment.

I know the lidar is fixed on the head, so the y-axis of
lidar frame and head frame are parallel. In this case, the point
xi, yi, zi = 0.15 is the corresponding point in the head frame.
The next task is to transform the points into the world frame.
Here, this could be done by three steps:
• Transform from moving head frame to fixed head

frame
I assume there is a fixed head frame. The head angle
could be considered as pitch angle θ and the neck angle
could be considered as yaw angle ψ between the two
different frames. For the convenience, I relist the Euler
angles extrinsic matrix:

R = Rz(ψ)Ry(θ)Rx(φ)

=

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ∗
 cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

∗

 1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

Here, only the θ and ψ are needed and φ is always
zero. After this operation, the lidar points have been
transformed to the fixed head frame.

• Transform from head frame to body frame
Here, there is only an offset along z-axis and it is the
distance between head and robot’s center of mass. Hence,
this transformation is very simple:z+ = 0.33.

• Transform from body frame to world frame
Since the roll and pitch angles around the robot’s center
of mass could be ignored, there is only yaw angle. The
yaw angle could be obtained by accumulating the angle
data from deltapose. Hence I successfully transform all
the points from lidar frame to the world frame.
I assume the height of the robot’s center of mass is fixed
at 0.93m, so any points with z smaller than 0.93m are
totally unreliable:they could be the contact points with
the floor or just some outliers. It is safe to remove all
such points.

D. Lidar-based Occupancy Grid Mapping

From the previous operation, all the points are represented in
the world coordinate but the robot could move in the world.
Given the robot pose at time t: xt, the real position of the

points in the world coordinate are:xi+ = xxt , yi+ = yt. I
could believe that all the grids corresponding to these points
are occupied, but in reality, it is not the case due to the noise.
Hence, the more general method is to model the map cells mi

as independent Bernoulli random variables:

mi =

{
Occupied(1) with prob.γi,t = p(mi = 1|z0:t, x0:t)
Free(-1) with prob.1− γi,t

From the above equation, to represent a probabilistic map, I
only need to keep a vector of the occupancies probabilities of
all the grids at time t:γit Using Bayes Rules:

γi,t =
1

ηt
ph(zt|mi = 1, xt)γi,t−1

Here, ηt is a constant but I don’t know its real value. However,
I can use a trick a cancel out this parameter.

1− γi,t =
1

ηt
ph(zt|mi = −1, xt)(1− γi,t−1)

If I define the odds ratio of a binary random variable mi:

o(mi|z0:t, x0:t) =
p(mi|z0:t, x0:t)

p(mi = −1|z0:t, x0:t)

=
γi,t

1− γi,t

=
ph(zt|mi = 1, xt)

ph(zt|mi = −1, xt)

γi,t−1

1− γi,t−1

Hence, I could conclude that to estimate the pdf of mi

conditioned on z0:t is equivalent to accumulating the log-odds
ratio:
λ(mi|z0:t, x0:t) = logo(mi|z0:t, x0:t)

= log(gh(zt|mi, xt)o(mi|z0:t−1, x0:t−1))

= λ(mi|z0:t−1, x0:t−1) + loggh(zt|mi, xt)

= λ(mi) +

t∑
s=0

loggh(zs|mi, xs)

In the above equation, λ(mi) represents the initial guess of
occupancy state of grid mi. Since I have no idea of how the
map should be, I just set it as zero. It is natural to tell the
probabilistic occuancy mapping reduces to keeping tracking
of the cell log-odds λi,t = λi,t−1 + ∆λi,t−1. To perform the
update described above, I need to specify the the observation
model, that is what is really ∆λi,t = loggh(zt|mi, xt).

Using Bayes rule again, I could simplify the observation
log-odds ratio:

gh(zt|mi, xt) =
ph(zt|mi = 1, xt)

ph(zt|mi = −1, xt)

=
p(mi = 1|zt, xt)p(mi = −1)

p(mi = −1|zt, xt)p(mi = 1)

∆λi,t = loggh(zt|mi, xt)

= loggh(zt|mi, xt) = log
p(mi = 1|zt, xt)
p(mi = −1|zt, xt)

− λ(mi)

Here, the second term λ(mi) represents the prior log-odds
ratio of the grid being occupied over being free. In this case,

since I have no idea of what the map is, it could be safely set
as zero. The first term specifies how I trust the observation zt.
For example, if zt indicates that mi is occupied, the log ratio
of the true positive vs false positive:

p(mi|miis observed occupied at timet)
p(mi = −1|miis observed occupied at timet)

= 4

For each observed cell i, decrease the log-odds if it was
observed free or increase the log-odds if the cell was observed
occupied:

λi,t+1 = λi,t + loggh(zt+1|mi, xt+1)

Finally, at time T , if the log ratio for cell i λi,T is larger than
0, I could consider it as the occupancy grid and draw it on the
map.

E. Particle filter for lidar-based localization

The main advantage of particle filter over bayes filter is
that instead of closed-form solution, it uses a certain number
of particles to approximate the probability distribution.

To be more specific, the particle filter uses a mixture of
delta functions(particles):

δ
(
x;µ(k)

)
:=

{
∞ x = µ(k)

0 else
for k = 1, . . . , N

with weights α(k) to represent pt|t and pt+1|t, such that:

p (xt|z0:t,u0:t−1) = pt|t (xt) =

Nt|t∑
k=1

α
(k)
t|t δ

(
xt;µ

(k)
t|t

)

p (xt+1|z0:t,u0:t) = pt+1|t (xt+1) =

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
xt+1;µ

(k)
t+1|t

)
Also, the sum of the weights of all the particles is always one.

1) Particle filter Prediction: I could approximate the pre-
diction step as follow:

pt+1|t(x) =

∫
pf (x|s,ut)

Nt|t∑
k=1

α
(k)
t|t δ

(
s;µ

(k)
t|t

)
ds

=

Nt|t∑
k=1

α
(k)
t|t pf

(
x|µ(k)

t|t ,ut

)
≈
Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x;µ

(k)
t+1|t

)
since pt+1|t(x) is a mixture pdf with components
pf

(
x|µ(k)

t|t ,ut

)
, I may approximate it with particles

by drawing samples from it. This conversion is significant
because it could help us avoid lots of integration and just use
motion model to each µ

(k)
t|t and obtain µ

(k)
t+1|t:

µ
(k)
t+1|t ∼ pf

(
µ

(k)
t|t , ut

)
and set α(k)

t+1|t = ᾱ
(k)
t|t

Besides, during each iteration, I have to compute Neff and
decide whether or not to resample all the particles. This would
be described later.

2) Particle filter Update:

pt+1|t+1(x) =
ph (zt+1|x)

∑Nt+1|t
k=1 α

(k)
t+1|tδ

(
x;µ

(k)
t+1|t

)
∫
ph (zt+1|s)

∑Nt+1|t
j=1 α

(j)
t+1|tδ

(
s;µ

(j)
t+1|t

)
ds

=

Nt+1|t∑
k=1

 α
(k)
t+1|tph

(
zt+1|µ(k)

t+1|t

)
∑Nt+1|t
j=1 α

(j)
t+1|tph

(
zt+1|µ(j)

t+1|t

)
 δ (x;µ

(k)
t+1|t

)
In the above equation, the right term is still the delta function,
which represents each particle. Hence, like the operation in
the prediction step, I only have to update the weights of each
particle and this is the meaning of the left part. Since I already
have known the values of α(j)

t+1|t for all j ∈ Nt+1|t, only

ph(zt+1|µ(k)
t+1|t) is unknown. For lidar-based localization, this

could be computed via softmax function:

ph(z|x,m) =
ecorr(z,m)∑
v e

corr(v,m)
∝ ecorr(z,m)

The correlation corr is computed as:corr(y,m) =∑
i 1 {mi = yi}. There are two important tips here:
• The denominator

∑
v e

corr(v,m) represents all
possible observations at the current state µ

(k)
t+1|t.

Intuitively, it could not be the same for all the
particles at different positions. However, as professor
told on piazza, if I introduce the assumption
that

∑
v exp (corr (lidar2world (v, xi) ,m)) =∑

v exp (corr (lidar 2world (v, xj) ,m)), the sum
over all possible lidar observations at two different
particle locations xi and xj for the same map are equal.
Professor also gave the reason:our map and observations
(after transforming to world and finding the cells) are
binary and even if the local map around the two different
locations are different the sum of the errors with respect
to all possible scans will be equal. After that, the update
of the weights of each particle is simple:

p (z|xk) =
ef(z,xk)∑
v e

f(v,xk)

α′k =
p (z|xk)αk∑
` p (z|x`)α`

=
ef(z,xk)αk∑

v e
f(u,xk)

∑
`
ef(z,x)(z`)∑
u e

f(u,x`)

=
ef(z,xk)αk∑

`

∑
ν e

f(v,xk)∑
u e

f(u,x`)
e
f(z,x`)α`

α′k =
softmaxk(c)αk∑
` softmax`(c)α`

Based on these derivatives, I could safely update the
weights of each particle by the ratio of corr(y,m) and
the sum of them.

• In order to improve the accuracy, I should add some
small shift or rotation into each particle. The main reason
behind this operation is that the probability of all possible

particles is enlarged and that really plays an important
role for the success of the particle filter.

corrnew (z,m,x) = max
∆x∈D

corr(lidar2world(z,x+∆x),m)

where D is the set of small deviations for the particle
pose x. After finding the corrnew value for each particle,
I can change the particle positions to x ← x + ∆x. In
practice, it could greatly improve the accuracy especially
for Lidar4 dataset. On the other hand, I could simply
increase the number of particles and it could provide with
the same improvement.
3) Particle filter Resample: I need to compute Neff and
if it is smaller than Nthreshold, resample the particle set{
µ

(k)
t|t , α

(k)
t|t

}
via stratified or sample importance resam-

pling.

Neff =
1∑N

k=1

(
α

(k)
t|t

)2 ≤ Nthreshold

In this project, I choose sample importance resampling
method, and it is very for easy for implementation
by python’s function np.random.choice. There are two
procedures:

– Draw j ∈ {1, . . . , N} independently with resplace-
ment with discrete probability α(j)

t|t

– Add the sample µ
(j)
t|t with weight 1

N to the new
particle set

Here, how I pick up such Nthreshold is very important. If I
select a very large value, the requirement for resampling would
be satisfied for most cases. It also comes with some other
effects:it would converge to the b̈estp̈article very quickly. On
the other hand, if I set it as a very small value, it would take
much longer time to converge, but keep as many candidates as
possible. This could work well if some sequence of sensor data
are incorrect because it would allow to keep some b̈adp̈articles
at current state, but indeed the correct ones. If Nthreshold is set
too large, these b̈adp̈articles would be removed immediately
and it would be less possible to find these particles.

F. Flowchart

G. Texture map

All the above sections describe how I implement particle fil-
ter to obtain the optimal robot’s trajectory and occupancy map.
And after that, I could use them and RGB and depth cameras
to color the map. This section could also be decomposed into
several tasks.

1) Data synchronization: This task is the same of synchro-
nization task for particle filter, except the fact that this time,
I synchronize the JointData with the images.

2) Convert depth into X,Y,Z coordinates: After reading each
depth image from dataset, the first step is to convert each pixel

Fig. 2. Flowchart

value into X,Y, Z coordinates. I rewrite the formula which
could finish this:

X =
(u− cx) ∗ Z

fx

Y =
(v − cy) ∗ Z

fy

u, v, fx, fy, cx, cy and Z are known, I could obtain X and
Y as shown above. Here I have to define Y as the direction
of the camera’s principal axis instead of Z, which would not
contradict to the representation of the world frame.

3) Transform from camera frame to the world frame: Using
the same transformation method I describe before, I could
transform the points from camera frame into world frame.
Based on the assumption that the robot’s center of mass keeps
at 0.93m, any points in world frame with z smaller than -0.93m
are supposed to be considered as floor. I mark these points
and record their X,Y, Z coordinates in camera frame(Depth
camera).

4) Extract RGB values for points marked as floor: Assume
I already know the X,Y, Z coordinates in the depth camera
frame, I need to transform these points from depth camera
frame into RGB camera frame. In the codes, the extrinsic
matrix is given from the function getExtrinsicsIRRGB. With
one step of transformation, these points could be represented
in the RGB camera frame as Xc, Yc, Zc. Then, the next step is
to find the corresponding pixel coordinates in the image plane:[

µ
1

]
=

1

Z

 fx 0 cx
0 f c
0 0 1

 X
Y
Z

Here, µ and ν represent the row and column index in the
image plane. I could extract the RGB value at (µ, ν).

However, due to the camera’s radial distortion, µ and ν I
compute are not the real ones. The simplest effective model
for radial distortion:

x = xd
(
1 + a1r

2 + a2r
4
)

y = yd
(
1 + a1r

2 + a2r
4
)

where (µ, ν) are the pixel coordinates of distorted points and
r2 = µ2 + ν2 and a1, a2 are additional parameters modeling
the amount of distortion. The x, y are the ideal points with
distortion effect removed. Hence, the more reasonable way is
to extract the RGB values at (x, y) instead of at (µ, ν).

5) Color the map: Since I know which points are consid-
ered to be ground floor and their RGB values, then I simply
set the value of corresponding grid cell on the occupancy map
as these RGB values.

H. Done!

Enjoy the results and the codes!

IV. RESULTS

A. Dead-reckoning

Fig. 3. Lidar0

From the above five figures, you could see the noise inside
sensor data would make it impossible to build the map or
localize the robot accurately.

B. Particle filter

In the first, I didn’t realize the importance of the number
of particles on the final results. Besides, for the purpose of
the computational efficiency, neither the shift nor the rotation
have been added into the correlation function for each particle.
I tried three particles and ten particles, but none of them works

Fig. 4. Lidar1

Fig. 5. Lidar2

well: For each number, I have tried different sets of parameters
but it doesn’t work. Hence, I decided to increase the number
of particles to 100 and this time, I obtained some good results.
You could see the quality of the occupancy map is much better
than the previous ones, which makes me strongly believe the
number of particles plays the most important role in particle
filter. And I think to add shift or rotation into the computation
of correlation function indeed has the same effect:to add
more diversity of particles(keep more effective candidates).
Maybe if I have a unbelievably powerful computing machine,
I could set the number of particles as infinity and that could

Fig. 6. Lidar3

Fig. 7. Lidar4

provide with the 100% accurate solution as bayes filter could
give(but it is not possible for implementation and that’s why
we have to make some linear Gaussian assumption or use some
nonparametric methods). For the dataset2 and dataset3, I could
also obtain some reasonable results. This means only 100
particles are in fact not enough even for some not so b̈adr̈esults
in these two cases.

However, at the beginning, what I tried to do is to try noise
with different magnitudes of noise. Indeed, it doesn’t work no
matter how I tune these parameters.

Right now, the possible reason I think is that the robot itself

Fig. 8. Lidar0(three particles)

Fig. 9. Lidar0(ten particles)

perform more worse in these four cases, which requires more
particles. So there are two methods to overcome this problem:
• Increase the number of particles
• Add shift or rotation when computing the correlation

function
However, due to the bad computing power of my laptop and
limited time left to me before the due time, none of them are
possible for implementation, which is a sad news.

C. Texture map

I first obtained the whole occupancy map and the robot’s
trajectory, and then try to color the map by the depth and

Fig. 10. Lidar0(100 particles)

Fig. 11. Lidar2(100 particles)

RGB images. All the procedures I described detailly in the
previous section, but my results are not accurate enough. I
don’t have time for extracting RGB values from the images,
so I just pick up some ground candidates on the map. However,
it seems something goes wrong in my codes since the result
is not ideal.

Fig. 12. Lidar3(100 particles)

Fig. 13. Lidar1(100 particles)

Fig. 14. Lidar4(100 particles)

Fig. 15. Texture map for Lidar0

V. ACKNOWLEDGMENT

I am grateful to the whole Python communities for provid-
ing us with so many powerful tools. Besides, I am grateful
to all classmates who shared so many great ideas and posted
them on piazza.

REFERENCES

[1] Sebastian Thrun, Wolfram Burgard and Dieter Fox, Probabilistic robotic-
s, MIT Press, 647 pp

