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Abstract—This paper represented approaches for visual-
inertial simultaneous localization and mapping problem(also
known as SLAM). In this project, we are provided with sensor
data, odometry, 2-D laser scans, and RGBD measurements from
a humanoid robot. However, all these sensor data are not perfect
because they are contaminated by random noise to some extent.
For this reason, instead of accumulating raw data without any
modification, I introduced extended kalman filter to predict and
update the mean and covariance of the state vector. In this case,
the state vector contains the pose of the autonomous driving car
and the 3D position of all the landmarks. Since, the rotation
needs to be updated during each iteration, Lie algebra and Lie
group are introduced for this purpose. With this modification,
the trajectory recovered from sensor data could be much better.

Index Terms—simultaneous localization and mapping(SLAM),
Extended kalman filter(EKF), Autonomous driving car, Lie
algebra and Lie group

I. INTRODUCTION

Robotics is the science of sensing and manipulating the
physical world through computer-controlled devices. Exam-
ples of successful robotic systems include mobile robots for
planetary exploration, industrial robotics arms in assembly
lines, autonomous driving cars and manipulators that assist
surgeons. Robotics systems are situated in the physical world,
obtain information from their local environments through on-
board sensors, and make reactions. While all of these examples
sound amazing, there are still some really challenging prob-
lems, which make these applications unavailable right now.
First of all, robot environments are inherently unpredictable
and dynamically changes. While the degree of uncertainty
in well-structured environments is small, environments such
as highways and private homes are highly dynamic, thus
highly unpredictable. The uncertainty is particularly high for
robots with people nearby. Second, sensors are limited in
what they can perceive. Limitations arise from several factors.
The range and resolution of a sensor is subject to physical
limitations. For example, cameras cannot see through walls,
and the spatial resolution of a camera image is limited. Sensors
are also subject to noise, which makes sensor measurements
unpredictable and hence limits the information that can be
extracted. Third, robot actuation involves motors that are also
unpredictable. Uncertainty arises from effects like control
noise or mechanical failure. Some actuators, such as heavy-
duty industrial robot arms, are quite accurate and reliable. Oth-
ers, like low-cost or legged mobile robots, can be extremely
flaky(like the humanoid robot in this project). How to handle

uncertainty is indeed the most important step towards robust
real-world robot systems [1].

During the decades of the development of Bayes filter-
s, there are various efficient algorithms including Extended
Kalman Filter, Unscented Kalman Filter and Particle Filter.
The main advantage of the extended kalman filter is that it
is easy for implementation. However, since most physical
models are nonlinear systems, we need to use first-order
Taylor expansion for linearization. In most cases, if the system
reserves linearity in a local region, the results could be good
enough. Besides, it is the most efficient method compared with
any other filters. That’s one of the reasons why it becomes
immensely popular in robotics and some other related areas.

II. PROBLEM FORMULATION

Given a set of sensor data including IMU and measurement
data from stereo camera, the problem is to build a map of each
landmark and mark the car’s trajectory on the map. However,
as I mentioned in the Introduction section, there are random
noise in these data, which requires me to implement extended
kalman filter to estimate the best trajectory and build the
feature map.

A. IMU-based Localization via EKF Prediction

The first task is to predict the car’s pose only by the IMU
data. Also, this is know as localization-only problem. As the
professor tells in the class, this time we would only use
kinematic rather than dynamic equations. Here is the problem
description:

• Assumption 1: linear velocity vt ∈ R3 instead of linear
acceleration at ∈ R3 measurements are available; angular
velosity wt ∈ R3 instead of angular acceleration αt ∈ R3

measurements are available.
• Assumption 2: the world-frame landmark coordinates

m ∈ R3×M are known.
• Assumption 3: the data association πt : {1, . . . ,M} →
{1, . . . , Nt} stipulating which landmarks were observed
at each time t is known or provided by an external
algorithm. In most cases, this is the hardest part.

• Objective: given the IMU measurements u0:T with ut :=[
v>t ,ω

>
t

]>
and the visual feature observations z0:T ,

estimate the inverse IMU pose Ut := wT−1l,t ∈ SE(3)
over time.



B. Landmark Mapping via EKF Update

The second task is to estimate the landmark positions,
assuming that the predicted IMU trajectory from the previous
problem is correct. In detail, we should implement an EKF
with the unknown landmark positions m ∈ R3×M as a state
and perform EKF update step after every visual observation
zt in order to keep track of the mean and covariance of m.
Note that in this case, we are assuming that the landmarks are
static so it is not necessary to implement a prediction step.
Here is the problem description:
• Assumption 1: the inverse IMU pose Ut := wT−1I,t ∈
SE(3) is known.

• Assumption 2: the landmarks are static, i.e., it is not
necessary to consider a prediction step.

• Assumption 3: the data association πt : {1, . . . ,M} →
{1, . . . , Nt} stipulating which landmarks were observed
at each time t is known or provided by an external
algorithm.

• Objective: given the visual feature observations z0:T
and inverse IMU pose Ut, estimate the homogeneous
coordinates m ∈ R4×M in the world frame of the
landmarks that generated the visual observations

The homogeneous coordinate of the position of each landmark
mi could be expressed as:

Homogeneous coordinates: mi :=

[
mi

1

]
Finally, we could simply extract x, y from each homogenous
coordinate(the first two elements) and then plot the feature
map.

C. Visual-Inertial SLAM

The third task is to combine the IMU prediction step from
part (A) with the land-mark update step from part (B) and
an IMU update step based on the stereo camera observation
model to obtain a complete visual-inertial SLAM algorithm.
The new function here is to update IMU pose based on
the stereo camera observation model. It is very similar to
the part (B) except the fact that the first-order Taylor series
approximation would be expanded at an inverse IMU pose
using a pose perturbation δµt+1|t+1 instead of the perturbation
δµt,j for the position of landmark j in part (B). Here is the
problem description:
• Assumption: The assumptions are the same as above.
• Objective: given the visual feature observations z0:T and

inverse IMU pose Ut, update the IMU pose Ut based on
the observation model and the sensor value.

To sum up, the output should include both the car’s trajectory
and the world-frame coordinates of all the landmarks. They
are shown in the following figure: The green trajectory and
the black landmarks are what we want.

Fig. 1. The final outputs(from page 3)

III. TECHNICAL APPROACH

In the Problem Formulation section, I briefly describe the
framework of how I deal with this project. In this section, I
will tell more details about each tasks.

A. IMU-based Localization via EKF Prediction

First, we could assume we already obtain the pri-
or probability distribution of time t by its mean and
covariance:Ut|z0:t,u0:t−1 ∼ N

(
µt|t,Σt|t

)
with µt|t ∈

SE(3) and Σt|t ∈ R6×6. Then our goal is to predic-
t the mean and covariance at time t + 1:Ut|z0:t,u0:t ∼
N
(
µt+1|t,Σt+1|t

)
.

Here, The covariance is 6× 6 because only the six degrees
of freedom of Ut ∈ SE(3) are changing.

The motion model could be described as:
Motion Model: with time discretization τ and noise wt ∼

N (0,W )

Ut+1 = exp
(
−τ ((ut + wt))

∧)
Ut ut :=

[
vt
ωt

]
∈ R6

Note that ut + wt is negative above since Ut is the inverse
IMU pose.

The reason is very simple: Let the IMU pose in continuous
time be wTI(t) = T (t) = U−1(t)

Ṫ = T û TU = 1 ṪU + T U̇ = 0

U̇ = −UṪU = −U(T û)U = −ûU
Ut+1 = exp (−τ ût)Ut

In the above equations, you could see why the ut+wt should
be negative when Ut is the inverse IMU pose.

Then, we need to define the kinematics model with pertur-
bation. There are four steps:



• Consider what happens with the pose kinematics

Ṫ = −(û + ŵ)T

if the pose is expressed as a nominal pose µ ∈ SE(3)
and small perturbation δµ̂ ∈ se(3) :

T = exp(δ̂µ)µ ≈ (I + δ̂µ)µ

• Substituting the nominal + perturbed pose in the kine-
matic equations:

(δ̂µ̂)µ+ (1 + δ̂µ)µ̇ = −(û+ ŵ)(1 + δ̂µ)µ

(δ̂µ)µ+ ˆδµµ̇+ µ̇ = −ûµ− ŵµ− ûδµ̂µ− ŵ ˆδµµ

µ̇ = −ûµ (δ̂µ)µ− ˆδµˆµu = −ŵµ− 0̂δµ̂µ

µ̇ = −ûµ δ̂µ = ˆδµû− ûδ̂µ− ŵ = (−ûδµ)∧ − ŵ

• Using T ≈ (I + δµ̂)µ, the pose kinematics Ṫ =
−(û + ŵ)T can be split into nominal and perturbation
kinematics:

nominal : µ = −ûµ ũ :=

[
ω̂ v̂
0 ω̂

]
∈ R6×6

perturbation : δµ = −ũδµ+ w

• In discrete-time with discretization τ, the above becomes:

nominal :µt+1 = exp (−τ ût)µt
perturbation : δµt+1 = exp (−τ ũt) δµt + wt

In the last step, we successfully separate the effect of the noise
wt from the motion of the deterministic part of Tt.

Finally, the EFK prediction step with wt ∼ N (0,W ) could
be defined as:

µt+1|t = exp (−τ ût)µt|t
Σt+1|t = E

[
δµt+1|tδµ

>
t+1|t

]
= exp (−τ ũt) Σt|t exp (−τ ũt)> +W

where

ut :=

[
vt
ωt

]
∈ R6 ût :=

[
ω̂t vt
0> 0

]
∈ R4×4

ũt :=

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6

During each iteration, we extract the IMU data and imple-
ment these steps. As a result, we could plot the car’s trajectory
from raw data and the figures are in Results.

B. Landmark Mapping via EKF Update

In this section, we consider the mapping-only problem,
assuming the inverse IMU pose

Ut := wT−1l,t ∈ SE(3)

is known.
At the time t + 1, we want to update the mean and

covariance of map at time t, which are the prior probability
distribution:m|z0:t ∼ N (µt,Σt) with µt ∈ R3M and Σt ∈
R3M×3M . Here, M represents the number of the landmarks
and it is known.

The observation model could be described as: Observation
Model: with measurement noise vt,i ∼ N (0, V )

zt,i = h (Ut,mj) + vt,i := Mπ (oTlUtmj) + vt,i

Where, π represents the projection function; mj represents the
homogeneous coordinate of the landmark j; M represents the
intrinsic matrix for stereo camera; oTl represents the extrinsic
matrix from IMU to the left camera; Ut represents the inverse
IMU pose; vt,i represents the measurement noise.

The expression and the derivative for function π is:

π(q) :=
1

q3
q ∈ R4 dπ

dq
(q) =

1

q3


1 0 − q1q3 0

0 1 − q2q3 0

0 0 0 0
0 0 − q4q3 1

 ∈ R4×4

All observations(stacked as a 4Nt vector) at time t could
be described in one equation:

zt = Mπ (oTlUtm)+vt vt ∼ N (0, I⊗V ) I⊗V :=

 V
. . .

V


The EKF update steps are:

Kt = ΣtH
>
t

(
HtΣtH

>
t + I ⊗ V

)−1
µt+1 = µt +Kt

zt −Mπ (oTlUtµt)︸ ︷︷ ︸
z̃t


Σt+1 = (I −KtHt) Σt

In the above equations, z̃t is the predicted observation based
on the landmark position estimates µt at time t and zt is the
measurement data read from sensors.

Hence, We need the observation model Jacobian Ht ∈
R4Nt×3M evaluated at µt. Let the elements of Ht ∈ R4Nt×3M

corresponding to different observations i and different land-
marks j be Ht,i,j ∈ R4×3.

Consider a perturbation δµt,j for the position of landmark
j :

mj = µt,j + δµt,j

Using the projection matrix P : P =
[
I 0

]
and the

first-order Taylor series approximation, we could rewrite the
observation model with perturbation δµt,j :

zt,i = Mπ
(
oT1Ut

(
µt,j + δµt,j

))
+ vt,i

= Mπ
(
oT1Ut

(
µ
t,j

+ P>δµt,j

))
+ vt,i

≈Mπ
(
oT1Utµt,j

)
︸ ︷︷ ︸

zt,i

+M
dπ

dq

(
oTlUtµt,j

)
oTlUtP

>︸ ︷︷ ︸
Ht,i,j

δµt,j + vt,i

Then, the jacobian of z̃t,i with respect to mj evaluated at
µt,j is:

Ht,i,j =


M ∂π

dq

(
oTlUtµt,j

)
oTlUtP

> if observation i corresponds
to landmarkj at time t

0 ∈ R4×3 otherwise



However, at each time t, the dimension of Ht is too
large(R4Nt×3M ), which would cost really a lot time. Hence,
the more practical way is to select Ht with the dimension
R4Nt×3Nt . The modification could greatly save much time.

Besides, if the landmark j has never been detected before,
we simply compute its position based on the car’s current pose
and the measurement data without any update.

Finally, perform the EKF update:

Kt = ΣtH
>
t

(
HtΣtH

>
t + I ⊗ V

)−1
µt+1 = µt +Kt (zt − z̃t) I ⊗ V :=

 V
. . .

V


Σt+1 = (I −KtHt)

C. Visual-Inertial SLAM
In the section IMU-based Localization via EKF Predic-

tion, we already obtain the predicted mean and covariance
based on the motion model. The next step is to update the
mean and covariance based on the measurement model.

The prior probability distribution here is the predicted mean
and covariance:Prior: Ut+1|z0:t, u0:t ∼ N

(
µt+1|t,Σt+1|t

)
with µt+1|t ∈ SE(3) and Σt+1|t ∈ R6×6.

The observation model is the same as in the visual mapping
problem but this time the variable of interest is the inverse
IMU pose Ut+1 ∈ SE(3) instead of the landmark positions
m ∈ R3×M .

We need the observation model Jacobian Ht+1|t ∈ R4Nt×6

with respect to the inverse IMU pose Ut, evaluated at µt+1|t.
Let the elements of Ht+1lt ∈ R4Nt×6 corresponding to
different observations i be Hi,t+1|t ∈ R4×6.

The first-order Taylor series approximation of observation i
at time t+1 using an inverse IMU pose perturbation δµt+1|t+1

is:
zt+1,i

= Mπ
(
oT1 exp

(
δµt+1|t+1

)
µt+1|tmt

)
+ vt+1,i

≈Mπ
(
oTt

(
1 + δµt+1|t+1

)
µt+1|tmt,t,i

)
+ vt+1,i

= Mπ

(
oT1µt+1|tmj + oTt

(
µt+1|tmj

)�
δµt+1|t+1

)
+ vt+1,i

≈Mπ
(
oTtµt+1|tmj

)
︸ ︷︷ ︸

zt+1,i

+M
dπ

dq

(
oT It,kµt+1|tmj

)
oTl

(
µt+1|tmj

)�
︸ ︷︷ ︸

Ht,k+1|t

δµt+1|t+1 + vt+1,i

where for homogeneous coordinates s ∈ R4 and ξ̂ ∈ se(3) :

ξ̂S = s�ξ

[
s
1

]�
:=

[
I −ŝ
0 0

]
∈ R4×6

Predicted observation based on µt+1|t and known corre-
spondences πt :

z̃t+1,i := Mπ
(
oTlµt+1|tmj

)
for i = 1, . . . , Nt

Jacobian of z̃t+1,i with respect to Ut+1 evaluated at µt+1|t

Hi,t+1|t = M
dπ

dq

(
oTlµt+1|tmj

)
◦ Tl

(
µt+1|tmj

)�
∈ R4×6

Finally, perform the EKF update:

Kt+1|t = Σt+1|tH
>
t+1|t

(
Ht+1|tΣt+1|tH

>
t+1|t + I ⊗ V

)−1
µt+1|t+1 = exp

((
Kt+1|t (zt+1 − z̃t+1)

)∧)
µt+1|t

Σt+1|t+1 =
(
1−Kt+1|tHt+1|t

)
Σt+1|t

where, Ht+1|t =

 H1,t+1|t
...

HNt+1,t+1|t


D. Joint update for the IMU and landmarks

In the previous subsection, we have successfully implement-
ed the IMU pose update via EKF. Right now, the last step is to
put the update for the IMU pose and landmarks together into
a large (3M+6)×(3M+6) covariance matrix and associated
mean.

In other words, we have to maintain the mean value vector
with the dimension (3M + 6) × 1 and the covariance matrix
with the dimension (3M + 6) × (3M + 6). Since from the
beginning, we have no ideas of the the position of each
landmarks, the mean value for them could be safely initialized
as 0(the same in the part b). Also, we could set the starting
point as the origin, so the mean value of car’s position at
t = 0 is also 0. For the covariance matrix, the left upper
submatrix(6× 6) is the the same as in the previous subsection
and the right lower submatrix(3M ×3M)) is the same as in
the part (b). Hence, the initial value for the mean vector and
the covariance matrix could be set as:

µ0 =
(

0 0 0 . . . 0
)T

Σ0 =



0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 ∞ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 · · · ∞


In practice, we could set a very large number instead of
infinity.

Then, the update step is the same as in the part(b) and in the
previous subsection. The elements in H matrix could be com-
puted by the method mentioned before. For each observation,
we could compute Ht,i,j and Hi,t+1|t, respectively. Hence, the
dimension of the joint H matrix should be 4Nt×(3×M+6).

The main reason why we need this joint updata is that a
separate update is less accurate because it ignores the non-
zero correlation between the map state and the IMU inverse
pose.



IV. RESULTS

A. IMU-based Localization via EKF Prediction

Fig. 2. results for data 0022

Fig. 3. results for data 0027

Fig. 4. results for data 0034

In the above figures, you could see the random noise in the
IMU data could bring in some problems when we compute
the car’s trajectory. For example, in Fig 3, the trajectory is not
a closed loop, but from the video, it should be. Besides, in
Fig 4, the trajectory is a little strange, because it seems the
car spin 180◦ around its own axis, which is impossible for any
cars.

In the code, I set the initial mean as 0-vector and the initial
covariance as 0-matrix. Besides, I set the motion noise as an
identity matrix.

B. Landmark Mapping via EKF Update

I assume the trajectories are perfect and compute the posi-
tions of each landmark.

Fig. 5. results for data 0022



Fig. 6. results for data 0027

Fig. 7. results for data 0034

In the above figures, I mark the landmarks on the map.
Here, I set the measurement noise as 0.5 pixel.

Fig. 8. results for data 0022

Fig. 9. results for data 0027

Fig. 10. results for data 0034

Here, I set the measurement noise as 4 pixels.

For the initial value of the mean, since we have no idea
of the position of each landmark, I simply set the mean as 0-
vector and when the landmark j has been detected for the first
time, I compute its position based on the car’s current pose and
measurement. For the initial value of the covariance, we have
no confidence of where they should be, so the uncertainty
should be infinite. In practice, they should be a very large
number and I simply set them as 1000.

Indeed, there is a little difference shown in the above
figures. And it means the mean value of each landmark keeps
unchanged. This fact makes me confused at first time, but
when I compare the covariance matrix, I find they are not the
same. Besides, when the measurement noise is set as 0.5, the
elements in the covariance matrix are smaller. This is true,
because if we think the sensor data are more reliable, the
uncertainty of the final results should be smaller. In this case,
if the measurement noise is only 0.5 pixel, the covariance
should be lesser compared it with the measurement noise as 4
pixels, which means we are more prone to believe the results
are correct.



C. Visual-Inertial SLAM

In this part, I need to combine the previous two parts and
update the pose based on the observation model.

Fig. 11. results for data 0022

Fig. 12. results for data 0027

Fig. 13. results for data 0034

In the above figures, I set the measurement noise as 4 pixels
and motion noise as an identity matrix.

You could see the estimated trajectories are much better than
then in the first part. For example, in Fig 12, the estimated
trajectory is right now a closed loop and in Fig 13, the
estimated trajectory is not strange any more. You could see
there is a U-turn.

Fig. 14. results for data 0022

Fig. 15. results for data 0027

Fig. 16. results for data 0034



In the above figures, I set the measurement noise as 10
pixels and motion noise as an identity matrix. The estimated
trajectories are the same, but the covariance matrix of the car’s
pose are not.

Fig. 17. Covariance matrix for 0022(measurement noise:4)

Fig. 18. Covariance matrix for 0022(measurement noise:10)

From the above two figures, I could tell the elements in
the first covariance matrix are smaller(you could compare the
elements on the diagonal). As I explain before, it means the
first results are more reliable, which corresponds to the fact
that the measurement noise is smaller.

D. Joint update for the IMU and landmarks

Fig. 19. results for data 0022

Fig. 20. results for data 0027

Fig. 21. results for data 0034



From the above three figures, you could see that there
is only a few difference compared with the results in the
previous subsection, when we don’t jointly update the mean
and covariance. I think maybe the correlation between robot’s
pose and the landmarks are not very strong, and even though
we choose to ignore them, we still could obtain some good
results.
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